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Abstract
In recent years, significant advances have been made to NoSQL
databases, enabling them to operate at extreme scale - Cassandra [16]
has been benchmarked at over a million writes/second [6]. However
our experience at Netflix has shown that applications often deal
with small-medium datasets that change less frequently. For these
scenarios, while SQL databases remain the popular persistence op-
tion [7], we’ve found that it can be challenging for applications to
achieve consistent performance with low latency and high availabil-
ity. Supplementing the primary store with caching improves read
performance, but at the cost of dealing with cache synchronization
complexities. Even fully in-memory databases carry the overhead
of network calls for every request.

This paper introduces RAW Hollow, a first of its kind object
store that is local and in-memory with opt-in strong consistency.
With RAW Hollow, the entire dataset is disseminated across the
application cluster and resides in the memory of each application
process. By leveraging compression, despite being in-memory, RAW
Hollow allows scaling datasets up to a 100 million records per
entity. Reads are eventually consistent by default, and completely
local to the application, ensuring extremely low latencies and high
availability. RAW Hollow allows applications to query millions
of records in milliseconds. Writes are reflected throughout the
cluster with single digit millisecond latencies. Users can select
strong consistency at the individual request level allowing them
to balance high availability with strong consistency. RAW Hollow
simplifies building stateful applications that are highly available
and easy to scale.

For this demo, we will load the entire public IMDb dataset
into RAW Hollow and allow users to experience first hand the
in-memory performance of RAW Hollow by querying, modifying
and cloning the data. We will also showcase its resiliency to dis-
tributed failures.
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1 Introduction
Netflix is the world’s largest subscription streaming service with
over 300 million users. In order to deliver an exceptional experience
to these users, services reliably handle billions of requests daily [17],
ensuring low latency and high availability. While Netflix processes
petabytes of data each day [17][5], many of its stateful services
that are crucial to the user experience manage relatively modest
datasets. A prime example is the VideoMetadata Service (VMS) [19],
which provides metadata for the movies and TV shows available
on Netflix. The scale of this metadata is directly correlated with the
size of the content catalog, and Netflix’s catalog size is orders of
magnitude smaller than platforms with user generated content like
TikTok or YouTube [18][10][4]. Consequently, services like VMS
focus on efficiently handling smaller datasets to be both reliable
and scalable.

This need led to the development of Hollow, a total, high den-
sity near-cache solution [12]. Hollow employs compression and
memory pooling techniques, enabling applications to cache and
query their entire dataset in main memory with minimal heap pres-
sure. As a near-cache, Hollow simplifies scaling and ensures high
availability by eliminating external dependencies for request pro-
cessing. Additionally, Hollow offers tools for operational visibility
into datasets, including comprehensive change history, version diff-
ing, and zero-copy cloning. Hollow has been battle-hardened over
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more than ten years and is the preferred option for slow changing
small to medium datasets at Netflix [15].

In 2023, we embarked on an initiative to extend Hollow’s capa-
bilities to use cases beyond read-only, resulting in the creation of
RAW Hollow (Read After Write Hollow). RAW Hollow integrates
the benefits of Hollow with the robust guarantees of a data store,
such as atomicity and tunable consistency. The narrow focus of this
system is designed to make it simple to build and maintain scalable
stateful services.

In the following sections, we start by offering a glimpse into
the impact of RAW Hollow within Netflix. We then provide an
overview of its architecture and characteristics. Finally we describe
the interactive demonstration.

2 RAWHollow at Netflix
In just over a year since its creation, RAW Hollow has reached over
500 deployments, including over 160 production deployments that
include critical tier 0 services. Select examples below.

OCP Live. Open Connect is Netflix’s Content Delivery Network.
RAWHollow is used to store network metadata by multiple services
within the Open Connect Control Plane (OCP). RAWHollow allows
Control Plane instances to rapidly initialize and store complex in-
memory data structures that reflect the network topology, enabling
the control plane to satisfy the low latency requirements of live
streaming.

OneID. Netflix’s internal Identity and Access Management plat-
form OneID uses RAW Hollow to represent its Universal Identity
Directory. The high availability coupled with the extremely low
latencies for even complex reads allowed OneID to go, with some
ingenuity, from a multilayered persistence stack comprising of Cas-
sandra, ElasticSearch [8] and NeptuneDB [3] to just RAW Hollow,
and improve their latencies in the process.

TudumCMS. RAWHollow powers the ContentManagement Sys-
tem for Tudum.com, the official companion site to Netflix. Tudum
CMS built a WYSIWYG live editor powered by RAW Hollow. RAW
Hollow replaced their previous solution which was a combination
of a 3rd party CMS provider and a distribution system.

3 System Overview
In the following sections, we present an overview of the Hollow
architecture and explain how we have built upon it to develop RAW
Hollow.

3.1 Hollow Architecture
Hollow is a Java library and toolset designed to efficiently distrib-
ute in-memory datasets from a single producer to multiple con-
sumers, enabling high-performance read-only access. It reduces
memory usage by using techniques like encoding, bit packing, and
de-duplication, allowing larger datasets to be stored in memory [11].

Figure 1: Hollow Example Memory Layout

On the data production side, Hollow serializes the latest and com-
plete state of the dataset into a de-duplicated, highly compact blob,
then calculates the changes, known as deltas, since the last state
and publishes it to the clients using Gutenberg, Netflix’s Pub/Sub
service [14]. Under the hood, Gutenberg uses Amazon S3 to store
the Hollow data in a versioned manner.

On the data consumption side, every instance has a Hollow Con-
sumer that retrieves the deltas to the local system. The consumer
transparently updates the near-cache and makes the new data avail-
able to query.

Figure 2: Hollow Architecture

3.2 RAW Hollow Architecture

Figure 3: RAW Hollow Architecture



RAW Hollow SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

In RAW Hollow, each dataset is identified by a namespace. RAW
Hollow follows a single tenant model with each namespace served
by its own RAW Hollow deployment. A deployment consists of
three distinct instance roles: writers, logkeepers, and producers. In
addition to these instance roles, ZooKeeper [13], Gutenberg, and
local clients also participate in the system as shown in Figure 3.

Writer. A RAW Hollow deployment will contain multiple writer
instances with one of them being active at a time.We use ZooKeeper
for leader election. An active writer instance contains a Hollow Con-
sumer that wraps the base dataset, an internal hash table of in-flight
changes, as well as a message queue. Each incoming write request
is assigned a monotonically increasing offset and added to the mes-
sage queue. The contents of the message queue are synchronously
replicated to all available logkeepers. The writer acknowledges the
write with the client only after all available logkeepers commit a
message. We have benchmarked the writes on our system to han-
dle a 1000 writes/second with payloads that are 10 KB large when
serialized.

Logkeepers. A logkeeper deliberately has very few moving parts.
It is implemented as an in-memory circular log statically configured
with a size of 1 GB. When a logkeeper receives a message and its off-
set from the writer, it will append the message to its log and confirm.
This operation requires no additional memory allocation, instead,
the logkeeper simply updates its internal pointers. Unlike other
distributed data stores, since the local clients handle all the read
operations, the logkeepers do not need to scale linearly with the ap-
plication read RPS. The resources for the logkeeper cluster is hence
modestly allocated. The writer coordinates the logkeeper quorum
via ZooKeeper. If any logkeeper becomes unavailable, the quorum is
updated before the next write is acknowledged. This along with the
synchronous replication ensures that every individual logkeeper
that is part of the quorum is always strongly consistent. Writes
fail if the logkeeper quorum falls below the minimum configured
threshold.

Producer. Apart from pulling the latest log entries from the log-
keeper, the producer behaves very similarly to a regular Hollow
producer. The producer updates the base Hollow dataset which
propagates via Gutenberg to the writer and all the local clients.
When the writer and client receive a new Hollow update, they can
reset their in-flight cache. At this point, the writer also triggers
the logkeepers to reset their internal log pointers. Zookeeper helps
ensure that there is no more than one active producer in a RAW
Hollow deployment.

Local Clients. With RAW Hollow, any application instance can
become a client of the system and receive an in-memory materi-
alized view with real-time updates for a dataset. Like the writer, a
RAW Hollow local client also contains a Hollow Consumer and the
hash table of in-flight changes. All the instances keep themselves
constantly up-to-date with the logkeepers through a form of long
polling. RAWHollow generates a Java API for the local client which
also allows clients to add custom indexes for arbitrary access to
any field.

4 RAWHollow ACID and CAP Properties
4.1 ACID Properties

Atomicity. RAW Hollow has a Bulk Update API that supports
grouping operations together atomically, allowing the entire set to
all be applied successfully together. If any of the operations fail, the
entire set of operations will fail together.

Consistency. The datasets in RAW Hollow always move from
one consistent state to another. The Conditional Bulk Update API
allows users to specify expectations and ensures that operations
will only be executed if the expectations are met. RAW Hollow has
a strong schema and all operations are validated against the schema.
RAW Hollow supports validation on Primary keys but does not
support foreign keys.

Isolation. RAW Hollow provides a single isolation level of Read
Committed whereby only committed changes are visible outside
the scope of a transaction.

Durability. In RAW Hollow, acknowledged in-flight changes are
always retained. Before a write is acknowledged by RAW Hollow,
it is synchronously replicated to all available logkeepers. If a writer
fails and an election is triggered, the incoming writer has to first
connect to the quorum of logkeepers and gather all the in-flight
changes. On the other hand if any logkeeper was to restart, or a new
one tries to join the quorum, they talk to the existing logkeepers
and rapidly collect any in-flight messages before officially joining
the quorum.

The logkeepers keep the in-flight messages in main memory, but
they are built to be simple and reliable. Logkeepers are also split
across all availability zones of a particular AWS region. For all of the
logkeepers to go down, the entire region would have to be affected,
which is highly unlikely [1]. Additionally, every 30 seconds the
producer creates a full snapshot of in-flight changes and uploads
them to Gutenberg, which under the hood uploads all the data to
S3. Beyond this time period, the full dataset along with the history
of changes will be permanently available in S3 which advertises 11
nines of reliability [2]. This durability has been acceptable to tier 0
services in Netflix.

4.2 CAP Properties
By default RAW Hollow is an AP [9] system. Since each local client
has an entire copy of the dataset, it is highly available and extremely
fault tolerant. Under steady state, the propagation latency to achieve
eventual consistency is in the low milliseconds. RAW Hollow also
allows users to pick strong consistency at the granularity of indi-
vidual requests. For those requests, RAW Hollow becomes a CP
system. Note that RAW Hollow’s implementation of strong consis-
tency still allows users to benefit from the locality of the dataset.
When the client receives a request for strong consistency, it holds
the request to ensure that it is fully caught up. Subsequent calls
within that same scope to the client continue to be local, amortizing
the overhead across all of the calls in that request.
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5 Demonstration
For the demonstration, we will set up a RAW Hollow cluster and
load the entire publicly available IMDb non-commercial dataset1.Users
will access a data explorer UI to experience RAW Hollow’s in-
memory performance. Figure 4 shows a screenshot of the UI dis-
playing records from the IMDb dataset’s Title Basics entity.

Figure 4: RAWHollow Data Explorer UI Showing Title Basics
Entity from the IMDb Dataset

• Zero Copy Clone/Restore: We will showcase RAW Hol-
low’s operational strengths by demonstrating the zero copy
clone/restore feature. Users can select an empty RAW Hol-
low namespace and populate it with the full IMDb dataset.
They will observe the memory usage required to store the
dataset and can modify the data. At the session’s end, the
namespace will be restored to its original state.

• Query Performance: Users will explore RAW Hollow’s
query capabilities by scanning thousands of records, retriev-
ing data using unique and hash indexes, or locating records
by primary key through the UI. They can update data and see
immediate changes with consistent queries. We will demon-
strate concurrency by allowing multiple users to modify the
same record simultaneously.

• Resilience to Distributed Failures: We will demonstrate
RAW Hollow’s resilience by performing destructive actions
on cluster components during use. Figure 5 shows a healthy
RAW Hollow cluster. Attendees will observe how the clus-
ter responds to failures and self-heals while continuing to
serve requests. Users will see a UI with three counters for a
single numerical record: the first represents successful write
increments, the second reflects real-time consistent reads,
and the third shows eventually consistent reads. We will
simulate failures by disabling a logkeeper, showing all coun-
ters continue to function. Next, we will disable the active
writer, allowing the backup writer to take over. This will
result in a brief pause of the write counter, with other coun-
ters unaffected. Finally, dismantling the entire cluster will
show that while write and consistent read counters fail, the
eventually consistent read counter continues, highlighting
RAW Hollow’s extreme availability.

1Information courtesy of IMDb (https://www.imdb.com). Used with permission.

Figure 5: A RAWHollow Deployment for the IMDb Dataset
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